Numerical Series Reasoning MCQ tests are designed to determine how easily you think with the numbers. In these tests, a series of numbers is provided to you and your task is to see how these numbers are related to each other and then you have to choose correct answer from given options.
0 2 4 6 8 ______
- 5
- 10
- 15
- 20
Correct answer: 10
0 (+2) 2 (+2) 4(+2) 6(+2) 8(+2) 10
2 5 9 14 20 ________
- 24
- 25
- 26
- 27
Correct answer: 4. 27 is the correct answer
2 (+3) 5(+4) 9(+5) 14(+6) 20(+7) 27
10 18 28 46 74 120
- 166
- 180
- 194
- 222
Correct answer: 3. 194
Solution:
10 18 –> (10 + 18 = 28)
18 28 –> (18 + 28 = 46)
28 46 –> (28 + 46 = 74)
46 74 –> (46 + 74 = 120)
74 + 120 –> (74 + 120 = 194)
1 3 7 15 31
- 35
- 46
- 63
- 83
Correct answer: 3. 63
Solution:
1(1*2 + 1) = 3
3*2 + 1 = 7
7*2 + 1 = 15
15*2 + 1 = 31
31 * 2 + 1 = 63
20 70 40 140 60 210 ____
- 70
- 80
- 420
- 580
Correct answer: 2. 80
Question has two series:
- 20, 40, 60, 80 (Each digital in series increases by 20)
- 70, 140, 210, 280 (Each digit in series increases by 70)
However question needs only one digit and which is 80 (following the first series). So 2. is the correct answer
1 12 5 10 ___ 8 13 ___
- 8, 18
- 9, 19
- 9, 6
- 10, 19
Correct answer: 9, 6
Solution:
Above question has two series
- 1, 5, 9, 13 (Each number adds by 4)
- 12, 10, 8, 6 (Each number decrements by 2)
11 55 220 660 ____
- 880
- 1022
- 1320
- 7708
Correct answer: 3. 1320
Solution:
Each number is series is multiple of previous number with descending order of counting starting from 5
11 * 5 = 55
55 * 4 = 220
220 * 3 = 660
660 * 2 = 1320
11 13 17 19 23
- 24
- 25
- 28
- 29
Correct answer: 4. 29
Solution: Series of numbers perfectly divisible only by themselves or 1.
7 15 32 67 138 _____
- 279
- 280
- 281
- 282
Correct answer: 281
Solution: Each number is multiplied by 2 and natural number starting from 1 added to the series.
7 * 2 + 1 = 15
15 * 2 + 2 = 32
32 * 2 + 3 = 67
67 * 2 + 4 = 138
138 * 2 + 5 = 281
0 1 4 9 16 _____
- 24
- 25
- 27
- 36
Correct answer: 2. 25
Solution: The series follows a square of whole numbers including zero as well.
(0)2 + (1)2 + (2)2 + (3)2 + (4)2 + (5)2 = 0 + 1 + 4 + 9 + 16 + 25